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Abstract

We present SolSeal, a two-part privacy infrastructure protocol for Solana. Part I
introduces encrypted balance vaults enabling confidential deposits, withdrawals, and
transfers using ElGamal homomorphic encryption over the BabyJubJub curve with
Groth16 zero-knowledge proofs. Unlike traditional mixers that only obscure transaction
linkages while keeping amounts visible, SolSeal maintains permanently encrypted
balances with a novel O(1) hint system using ECDH and Poseidon hashing for instant
balance discovery. A secret key ownership model decouples vault control from wallet
addresses, preventing ownership attribution. Part I is production-deployed on Solana
mainnet (Program ID: EbhjvV5oXvrkN5zVjd6GE1NXe8aNaWfgRLmGgaL2r5K3). Part
II extends this foundation to privacy-preserving DeFi yields, enabling institutions to
earn returns from established Solana protocols (Kamino, Marinade, Jupiter) while
maintaining encrypted balances. Through a delegation token model and privacy pools,
users access yields without exposing position sizes or strategies. This two-part
architecture provides both immediate privacy infrastructure (Part I) and
institutional-grade privacy yield capabilities (Part II roadmap).



PART I

CORE PRIVACY INFRASTRUCTURE

Encrypted Balance Vaults for Confidential Transactions

Status: Production Deployed on Solana Mainnet

1. INTRODUCTION: THE TRANSPARENCY PROBLEM

Public blockchains expose all account balances and transaction amounts to maintain trustless
verification. On Solana, any observer can view wallet holdings, track transfer amounts, and analyze
financial activity patterns. While this transparency enables decentralization, it creates fundamental
privacy challenges for users managing significant holdings, executing trading strategies, or conducting
business operations.

1.1 Why Existing Privacy Solutions Fall Short

Traditional mixers (tumblers) obscure the connection between deposits and withdrawals but suffer
critical limitations:

• Visible amounts: Deposit 5 SOL → observers see 5 SOL entered. Withdraw 5 SOL → observers see
5 SOL exited. The linkage may be obscured, but amounts are public.

• No persistent privacy: Once funds exit the mixer, subsequent transactions occur transparently
unless repeatedly mixed.

• Fixed denominations: Many mixers require standard amounts (0.1, 1, 10 SOL), leaking information
through denomination patterns.

• Wallet-locked ownership: Funds are tied to specific wallet addresses, enabling probabilistic
attribution analysis.

1.2 SolSeal's Encrypted Balance Approach

SolSeal provides encrypted balance vaults rather than transaction mixing. Your balance exists as an
ElGamal ciphertext on-chain—a cryptographic scrambling indistinguishable from random data to
external observers. Key properties:

• Hidden deposits: Deposit amounts immediately encrypted, never visible in plaintext

• Hidden balances: Account balances stored as ciphertexts; external observers see encrypted
garbage



• Hidden transfers: Send encrypted amounts to other vaults without revealing transfer sizes

• Hidden withdrawals: Withdrawal amounts remain encrypted throughout execution

• Secret key ownership: Vault control independent of wallet addresses; access from any wallet

Think of SolSeal as a private bank vault on Solana. Your funds don't sit as openly visible
numbers—they exist as encrypted balances only you can decrypt. Privacy persists throughout
the entire lifecycle of your funds.



2. HOW ENCRYPTED BALANCE VAULTS WORK

2.1 Vault Structure and Creation

A SolSeal vault is a Solana program-derived address (PDA) storing encrypted state:

struct Vault {

    balance_c1: [u8; 64],        // ElGamal ciphertext component 1

    balance_c2: [u8; 64],        // ElGamal ciphertext component 2

    owner_pubkey: [u8; 32],      // BabyJubJub public key

    nonce: u64,                  // Replay protection counter

    hint_ciphertext: [u8; 32],   // Encrypted hint for O(1) discovery

    bump: u8,                    // PDA bump seed

}

// Total: 161 bytes on-chain storage

Creating a vault:

1. User generates secret key (256-bit random value, client-side only)

2. Compute public key: pk = sk · G (BabyJubJub curve point)

3. Initialize vault PDA with ~0.0004 SOL rent

4. Store encrypted public key and initial zero balance ciphertext

Critical: The secret key NEVER leaves your device. It's not stored on-chain, not transmitted to
servers, and not recoverable if lost. This is true self-custody.

2.2 The Dual Authentication Model

SolSeal implements two-factor authentication for maximum security:

Factor Purpose Technology Loss Impact

Wallet Signature Authorize transactions Solana ed25519 Cannot submit TXs

Secret Key (SK) Generate ZK proofs BabyJubJub scalar Cannot decrypt/prove ownership

Table 1: Two-factor authentication model

An attacker gaining access to your Solana wallet CANNOT decrypt balances or prove vault ownership
without the secret key. Conversely, possessing the secret key without wallet access cannot submit
transactions. Both factors required for fund movement.

2.3 Deposit Operation

Depositing SOL into your encrypted vault:

1. Client encrypts amount: Compute Enc(amount) using ElGamal with your vault public key

2. Generate ZK proof: Prove you know the secret key and encryption is correct (without revealing
amount)



3. Transfer SOL: Send amount SOL from wallet to vault PDA

4. Update vault: Store encrypted ciphertext on-chain (balance += amount, but encrypted)

5. Emit encrypted hint: Enable O(1) balance discovery for next access

Fee structure: 0.25% deposit fee. Example: Deposit 10 SOL → 9.975 SOL encrypted in vault.

Observer view: Sees transaction to vault PDA, sees encrypted ciphertext update, but
CANNOT determine deposit amount.

2.4 Withdrawal Operation

Withdrawing SOL from encrypted vault back to transparent wallet:

1. Client decrypts balance: Use secret key to decrypt current balance, verify sufficient funds

2. Compute new encrypted balance: Calculate Enc(balance - withdrawal_amount)

3. Generate ZK proof: Prove balance sufficiency and correct update (takes 5-15 seconds client-side)

4. Submit transaction: Transfer withdrawal_amount SOL from vault PDA to wallet

5. Update vault: Store new encrypted balance on-chain

Why withdrawals take longer: Generating a Groth16 zero-knowledge proof client-side
requires 5-15 seconds of computation. This proves balance sufficiency without revealing the
amount to validators.

2.5 Transfer Operation (Stealth Payments)

Send encrypted amounts between SolSeal vaults without revealing transfer sizes:

1. Two-transaction model: Split into Prepare and Execute due to Solana's 1232-byte transaction size
limit

2. Prepare TX: Lock funds from sender, generate ZK proof of sender balance

3. Execute TX: Deliver encrypted amount to recipient, update both vault balances

4. Expiration: If Execute fails, funds automatically return after ~2 minutes

Privacy properties: Neither sender nor recipient amounts visible on-chain. Only encrypted ciphertexts
and validity proofs are public. Both parties receive encrypted hints enabling instant balance updates.



3. CRYPTOGRAPHIC FOUNDATIONS

3.1 ElGamal Encryption on BabyJubJub

SolSeal uses ElGamal encryption over the BabyJubJub twisted Edwards curve, optimized for
zero-knowledge circuits:

Curve Equation: a·x² + y² = 1 + d·x²·y²

Parameters:

  a = 168700

  d = 168696

  Field: Fr of BN254 (~2^254 bits)

  Subgroup Order: l ≈ 2^251

ElGamal Encryption:

  Public Key: pk = sk · G

  Encrypt(value, pk, r):

    C1 = r · G           // 64 bytes

    C2 = value · H + r · pk  // 64 bytes

  Total Ciphertext: 128 bytes

Decryption:

  value · H = C2 - sk · C1

  Solve discrete log to recover value

Homomorphic property: ElGamal enables addition on encrypted values:

Enc(a) ⊕ Enc(b) = Enc(a + b)

This allows operations like balance updates (adding deposits, subtracting withdrawals) directly on
ciphertexts without decryption.

3.2 Zero-Knowledge Proof System

SolSeal employs Groth16 zkSNARKs to prove transaction validity without revealing amounts:

Circuit Public Inputs Purpose

kosk_proof 2 (pk) Prove knowledge of secret key

deposit_equality_proof 7 (amount, pk, c1, c2) Prove ciphertext encrypts claimed amount

transfer_sender_proof 6 (pk, c_new) Prove sender new balance ≥ 0

withdraw_proof_v2 13 (pk, c_old, c_new, amount, nonce)Prove valid withdrawal with nonce

Table 2: Zero-knowledge proof circuits in production deployment

3.3 The O(1) Hint System

Traditional privacy systems force users to scan the entire blockchain to find their transactions (O(N)
complexity). For a balance of 48 bits, this requires ~16 million operations taking 5-120 seconds.

SolSeal's solution: ECDH-encrypted hints



// Hint Generation (transaction execution)

shared_secret = randomness · pk_vault

hint = value + Poseidon(shared_secret.x)

emit HintEvent(C1, hint)

// Hint Decryption (client-side, O(1))

shared_secret = sk_vault · C1

value = hint - Poseidon(shared_secret.x)

Time Complexity: O(1) - one scalar multiplication + one hash

Typical Performance: ~50ms per hint verification

Security: Without the secret key, hints are computationally indistinguishable from random
values under the Computational Diffie-Hellman assumption. Observers learn nothing about
vault updates.

3.4 Replay Protection via Nonce Binding

Each vault maintains a nonce counter incremented with every transaction. ZK proofs bind to the current
nonce, preventing proof reuse:

• Nonce binding: Each proof includes slot.nonce as public input

• Auto-invalidation: nonce++ after successful transaction execution

• Proof hash check: On-chain verification ensures nonce matches current state



4. PRODUCTION DEPLOYMENT SPECIFICATIONS

4.1 Deployed System Details

Program ID: EbhjvV5oXvrkN5zVjd6GE1NXe8aNaWfgRLmGgaL2r5K3

Network: Solana Mainnet

Status: Production Active

On-Chain Events:

  DepositHintEmitted: 144 bytes

    (slot, c_deposit_c1, value_hint, timestamp)

  

  WithdrawHintEmitted: 144 bytes

    (slot, c_new_balance_c1, value_hint, timestamp)

  

  TransferHintEmitted: 176 bytes

    (sender_slot, receiver_slot, c_transfer_c1, value_hint)

  

  SenderHintEmitted: 144 bytes

    (sender_slot, c_new_balance_c1, sender_value_hint)

4.2 Performance Characteristics

Operation Proof Time On-Chain Time Total Latency Cost

Deposit ~1s 400ms ~1.4s 0.25% + gas

Withdrawal 5-15s 400ms 5.4-15.4s Gas only

Transfer (Prepare) 3-5s 400ms 3.4-5.4s Gas only

Transfer (Execute) N/A 400ms 400ms Gas only

Hint Verification N/A Off-chain ~50ms Free

Table 3: Production performance metrics

4.3 Practical Constraints and Limits

• Maximum balance: ~281,000 SOL (encryption scheme limit)

• Default decryption range: Up to 100 SOL (configurable)

• Minimum deposit: Technically none, but 0.25% fee makes tiny deposits uneconomical

• Slot opening cost: ~0.0004 SOL (refundable rent)

• Transaction size limit: 1232 bytes (why transfers require two TXs)

• BSGS fallback: 5-120 seconds when hints unavailable (rare)

4.4 User Experience Balance Discovery

Three methods for balance synchronization, used automatically in optimal order:



Method Speed When Used

Cached State Instant When stored state matches on-chain

Value Hints ~50ms After deposits, withdrawals, or transfers

BSGS Search 5-120s When no hints available (rare fallback)

Table 4: Balance discovery methods



5. SECURITY ANALYSIS

5.1 Privacy Guarantees

• Semantic security (IND-CPA): ElGamal ciphertexts are computationally indistinguishable from
random group elements under the Decisional Diffie-Hellman assumption

• Transaction unlinkability: Cannot link deposits to withdrawals except through timing/amount
correlation analysis

• Ownership privacy: Secret key ownership prevents attribution; same vault accessible from multiple
wallets

• Zero-knowledge soundness: Cannot forge proofs for invalid transactions under
knowledge-of-exponent assumption

5.2 What SolSeal Is NOT

Important clarifications to set correct expectations:

• NOT a mixer: Your vault is linked to your Solana wallet at creation. Transaction history is visible (not
amounts).

• NOT a tumbler: You cannot mix funds with others; each vault is independent.

• NOT complete anonymity: Sophisticated analysis may correlate deposits/withdrawals via timing or
behavioral patterns.

• NOT regulatory evasion: Designed for legitimate privacy, not illicit concealment. Viewing key
extensions planned.

5.3 Attack Resistance

• Front-running attacks: Encrypted amounts prevent MEV bots from extracting value based on
transaction sizes

• Inflation attacks: ZK proofs ensure balance updates conserve total supply; no unauthorized minting

• Replay attacks: Nonce binding prevents proof reuse; each proof valid for exactly one nonce value

• Correlation attacks: While timing analysis possible, amount privacy prevents direct linkage of
specific deposits to withdrawals



PART II

PRIVACY YIELD EXTENSION

Earning DeFi Yields with Encrypted Balances

Status: Roadmap / Technical Design

6. EXTENDING ENCRYPTED VAULTS TO EARN YIELDS

6.1 The Institutional DeFi Opportunity

Part I provides encrypted balance infrastructure for confidential transactions. Part II extends this
foundation to enable institutions to earn DeFi yields while maintaining position privacy. The market
opportunity is substantial:

• $130+ billion in DeFi lending protocols (Aave, Morpho, Compound)

• $306 billion stablecoin market cap, <5% in DeFi yields

• Corporate treasuries want 8-15% vs. 2-3% TradFi, blocked by transparency

• Institutions accept 2-5x transaction costs for compliant privacy

6.2 The Encrypted-Balance-Yield Problem

Part I's encrypted vaults create a technical challenge: yield protocols need to see balances to
calculate interest.

Traditional approach: User deposits 1000 SOL → Protocol sees 1000 → Calculates 8% → Returns
1080 SOL.

Encrypted approach problem: User deposits Enc(1000) → Protocol sees ciphertext (gibberish) →
Cannot calculate interest.

Solution: Privacy pools with delegation tokens (adapted from Penumbra).

6.3 Privacy Pool Architecture

Privacy pools aggregate encrypted deposits and deploy capital to yield sources as single large
institutional positions:

User Flow:

1. Alice deposits Enc(100 SOL) to privacy pool



2. Bob deposits Enc(200 SOL) to privacy pool

3. Carol deposits Enc(700 SOL) to privacy pool

Privacy Pool State:

  Total: 1000 SOL (pool knows plaintext aggregate)

  Alice owns: Enc(10% shares)

  Bob owns: Enc(20% shares)

  Carol owns: Enc(70% shares)

Pool → Kamino Lending:

  Single deposit: 1000 SOL

  Kamino sees: One institutional depositor

  Kamino does NOT see: Individual users or amounts

Yield Accrual (8% APY):

  Kamino returns: 1080 SOL to pool

  Alice's shares now worth: 10% of 1080 = 108 SOL

  Bob's shares now worth: 20% of 1080 = 216 SOL

  Carol's shares now worth: 70% of 1080 = 756 SOL

Shares remain encrypted; only redemption values visible to users.

6.4 Why This Works

• For privacy: Individual deposits encrypted, share ownership encrypted, withdrawal amounts
encrypted

• For yield calculation: Kamino operates on pool total (1000 SOL), no encryption complexity on their
end

• For composability: Works with existing Solana protocols without modifications

• For efficiency: Single large position vs. many encrypted micro-positions



7. SOLANA YIELD SOURCE INTEGRATION

7.1 Target Integration Partners

Privacy pools will integrate with established Solana yield protocols:

Protocol TVL Category Target APY Integration Status

Kamino Finance $3.7B Lending 8-12% Priority integration

Marinade Finance $2.2B Liquid staking 6-8% Priority integration

Jito $1.87B Liquid staking 7-9% Under evaluation

Jupiter Lend $1.65B Lending 10-15% Under evaluation

Orca $500M+ DEX LP 12-18% Future consideration

Table 5: Target Solana yield protocol integrations

7.2 Integration Requirements

For a yield protocol to be compatible with SolSeal privacy pools:

✓ Accept standard SOL/USDC deposits

✓ Return deposits + yield to same address

✓ No permanent lockups preventing withdrawals

✓ Transparent yield calculation (even if balances aren't)

✓ Support for large institutional-sized positions

Critically: Yield protocols require ZERO modifications. Privacy pools interact as normal large
depositors.

7.3 Homomorphic Yield Application

Leveraging ElGamal's additive homomorphism, interest can be applied directly to encrypted balances:

// Pool operator (or smart contract) applies yield

current_pool_total = 1000 SOL

yield_earned = 80 SOL (8% APY)

new_pool_total = 1080 SOL

// User's encrypted shares don't change

// But redemption value increases proportionally

Alice_shares = Enc(10%)

Redemption_value = 10% × 1080 = 108 SOL

// No decryption needed for yield accrual

// Shares appreciate automatically with pool value



8. INSTITUTIONAL COMPLIANCE FEATURES

8.1 Viewing Keys for Selective Disclosure

Institutional adoption requires regulatory auditability without market exposure. Privacy yield extends
Part I's architecture with viewing keys:

struct InstitutionalVault {

    // User ciphertext (only user can decrypt)

    user_ciphertext: ElGamalCiphertext,

    

    // Auditor ciphertext (same balance, auditor key)

    auditor_ciphertext: ElGamalCiphertext,

    

    // Compliance proof (screened via oracle)

    compliance_proof: Groth16Proof,

    

    // Yield commitment (for solvency proofs)

    yield_commitment: PedersenCommitment,

}

• Read-only access: Auditors decrypt balances but cannot move funds

• Threshold decryption: 5-of-9 committee required for involuntary access

• Selective disclosure: User controls which auditors receive viewing access

• Regulatory compliance: Satisfies GENIUS Act requirement for 'technical capability' to provide
regulatory access

8.2 Compliance Oracle Integration

Pre-transaction screening prevents illicit fund entry while maintaining depositor privacy:

1. User requests screening attestation from oracle (Chainalysis/TRM)

2. Oracle verifies address against AML/OFAC sanctions lists

3. If clean, oracle signs attestation

4. User generates ZK proof: 'I belong to approved set' without revealing identity

5. Smart contract verifies proof before accepting deposit

Result: Protocol demonstrates regulatory screening without maintaining permanent user
databases. Privacy from market, transparency to regulators.

8.3 Regulatory Framework Compliance

• GENIUS Act (July 2025): Federal stablecoin framework; compliance via viewing keys and screening

• CLARITY Act (July 2025): DeFi safe harbor provisions; privacy pools operate as automated
protocols



• Tornado Cash precedent (March 2025): Immutable code unsanctionable; compliance built in from
day one avoids liability

• SEC endorsement (Dec 2025): Chair Atkins explicitly supports 'zero-knowledge proofs and selective
disclosure systems'



9. IMPLEMENTATION ROADMAP

9.1 Technical Development Phases

Phase 1: Viewing Key Integration (2-3 months)

• Multi-recipient encryption for vault balances

• Threshold decryption committee (5-of-9 multisig)

• Viewing key rotation mechanisms

• Testnet deployment and testing

Phase 2: Compliance Infrastructure (1-2 months)

• Chainalysis/TRM oracle API integration

• Privacy Pools-style association sets

• Pre-deposit screening smart contracts

• Regulatory reporting dashboard

Phase 3: Yield Pool Implementation (2-3 months)

• Delegation token smart contracts

• Kamino/Marinade integration wrappers

• Homomorphic interest calculation

• Solvency proof systems (Merkle sum trees)

Phase 4: Security & Launch (2-3 months)

• Trail of Bits security audit

• Zellic Solana-specific audit

• Bug bounty program ($500K pool)

• Mainnet deployment with institutional pilots

9.2 Success Metrics

• TVL target: $100M+ within 12 months (sufficient anonymity set)

• Institutional clients: 10+ funds/treasuries using privacy yield

• Yield competitiveness: Within 50bps of transparent alternatives

• Zero enforcement actions: Proactive regulatory compliance



• Transaction privacy: >95% of volume in shielded pools



10. CONCLUSION

SolSeal presents a two-part privacy infrastructure for Solana addressing immediate confidentiality
needs and enabling future institutional DeFi adoption.

10.1 Part I: Proven Production Infrastructure

The core encrypted balance system is production-deployed on Solana mainnet (Program ID:
EbhjvV5oXvrkN5zVjd6GE1NXe8aNaWfgRLmGgaL2r5K3), demonstrating that encrypted balance
vaults can operate at scale. Key achievements:

• Permanently encrypted balances using ElGamal over BabyJubJub

• O(1) balance discovery via ECDH-encrypted hints (~50ms typical)

• Secret key ownership preventing wallet-based attribution

• Production performance: ~240,000 compute units, sub-second finality

• Zero-knowledge soundness via Groth16 proofs

10.2 Part II: Institutional Privacy Yield Pathway

The privacy yield extension leverages Part I's proven infrastructure to enable institutional DeFi
participation. The technical approach is sound, regulatory framework is clarified, and market demand is
documented. Implementation phases target 8-10 month development cycle with institutional pilots
beginning in Phase 4.

10.3 The Convergence Moment

Three factors create a unique opportunity for institutional privacy infrastructure:

• Regulatory clarity: GENIUS Act, CLARITY Act, and SEC endorsement establish frameworks for
compliant privacy

• Proven technology: Part I demonstrates encrypted balances work in production; Part II extends
existing foundation

• Market demand: $306B stablecoins seeking yields, institutional DeFi adoption accelerating, privacy
premium documented

SolSeal provides both immediate privacy infrastructure (Part I, available now) and institutional-grade
privacy yield capabilities (Part II, roadmap). The two-part architecture enables iterative development:
prove the core technology works, then extend to institutional use cases with viewing keys and
compliance integration.

The code, documentation, and technical specifications are available at solseal.xyz and
github.com/solseal.
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